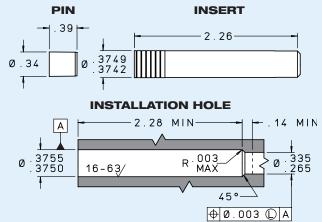

PRODUCT DATA SHEET

375 PRI®/CHEK® VALVE

The Lee Company's new 375 PRI/Chek Valve combines the function of a pressure relief valve in parallel with a check valve into one easy to install insert. The relief valve function features a rugged Tungsten Carbide ball and a 440C seat for durability and long life. The remaining components are constructed entirely of stainless steel.

The 375 PRI/Chek Valve is available in a range of relief flow cracking pressures for system pressures up to 5000 psi. Maximum restriction in the free flow direction is only 220 Lohms (see reverse page for an explanation of Lohms).

Each Lee PRI/Chek Valve is 100% tested and inspected in both flow directions to ensure reliable, consistent performance.



MATERIALS					
PART	MATERIAL	SPECIFICATION			
Shuttle Plate	304 CRES	AMS 5639			
Seat	440C CRES	AMS 5630			
Spring Seat	15-5PH CRES	AMS 5659			
Springs	17-7PH CRES	AMS 5678			
Retainer	15-5PH CRES	AMS 5659			
Shim	17-7PH CRES	AMS 5529			
Body	304 CRES	AMS 5639			
Ball Follower	304 CRES	AMS 5639			
Tube	13-8 MO CRES	AMS 5629			
Ball	Tungsten Carbide	-			
Orifice Plate	304 CRES	AMS 5639			
Pin	17-4PH CRES	AMS 5643			

Finish: All CRES Parts Passivated. Pins are prewaxed. Do not degrease. Do not lubricate. Combines the function of a pressure relief valve in parallel with a check valve.

- Durable tungsten carbide ball and a 440C Cres seat.
- Designed for system pressures up to 5,000 psi
- Weighs only 24 grams
- Endurance tested to 100,000 relief flow and 500,000 free flow cycles

	RELIEF FLOW DIRECTION				FREE FLOW DIRECTION		
LEE PART NUMBER	MINIMUM	FLOW POINT		MINIMUM SHUTOFF	CRACKING	LOHM	
	CRACKING PRESSURE (psid)	LOHM RATE	MIN. FLOW (gpm)	AT (psid)	PRESSURE (psid)	PRESSURE (psid)	SURE 25 PSID
PFRA3750300D	3000	400	3.7	3850	2850	5 ± 3	220 max
PFRA3750320D	3200	400	3.8	4050	3000	5 ± 3	220 max
PFRA3750340D	3400	400	3.9	4250	3200	5 ± 3	220 max
PFRA3750420D	4200	400	4.0	5250	4000	5 ± 3	220 max
PFRA3750440D	4400	400	4.1	5400	4200	5 ± 3	220 max
PFRA3750520D	5200	400	4.9	6550	5000	5 ± 3	220 max
PFRA3750540D	5400	400	5.0	6750	5200	5 ± 3	220 max

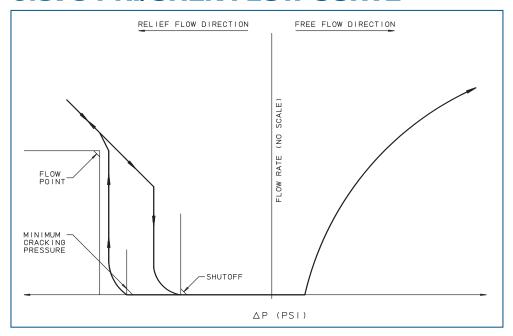
PERFORMANCE

Relief Flow Direction:

Leakage at Minimum Cracking Pressure: Leakage at Minimum Shutoff Pressure: Restriction at Minimum Recommended Valve Lift:

Nominal System Pressure: System Peak Pressure: Nominal Weight: 2 mL/min maximum 2 mL/min maximum 1500 Lohms Up to 5000 psi 6750 psi maximum 24 grams

Valve performance on MIL-PRF-83282 or MIL-PRF-5606 at 85°F±15°F.


Tel: 860-399-6281

Fax, Order Entry: 860-399-7058

Fax, Technical Information: 860-399-7037

Web: www.TheLeeCo.com

0.375 PRI/CHEK FLOW CURVE

LEE LOHM LAWS

LOHMS LAWS (liquids)

Every engineer will be interested in our simple system of defining the fluid resistance of Lee hydraulic components.

Just as the OHM is used in the electrical industry, we find that we can use a liquid OHM or "Lohm" to good advantage on all hydraulic computations.

When using the Lohm system, you can forget about coefficients of discharge and dimensional tolerances on drilled holes. These factors are automatically compensated for in the Lohm calculations, and confirmed by testing each component to establish flow tolerances. The resistance to flow of any fluid control component can be expressed in Lohms.

The Lohm has been selected so that a 1 Lohm restriction will permit a flow of 100 gallons per minute of water with a pressure drop of 25 psi at a temperature of 80°F.

LIQUID FLOW FORMULA

The following formulas are presented to extend the use of the Lohm laws to many different liquids, operating over a wide range of pressure conditions.

These formulas introduce compensation factors for liquid density and viscosity. They are applicable to any liquid of known properties, with minimum restrictions on pressure levels or temperature.

The units constant (K) eliminates the need to convert pressure and flow parameters to special units.

Volumetric
$$L = \frac{KV}{I} \sqrt{\frac{H}{S}}$$
 Gravimetric $L = \frac{KV}{w} \sqrt{HS}$

LIQUID FLOW - UNITS CONSTANT K

VOLUMETRIC FLOW UNITS					
	Pressure Units				
Flow Units	psi	bar	kPa		
GPM	20	76.2	7.62		
L/min	75.7	288	28.8		
ml/min	75 700	288 000	28800		
in³/min	4620	17600	1 760		

GRAVIMETRIC FLOW UNITS					
	Pressure Units				
Flow Units	psi	bar	kPa		
PPH	10 000	38 100	3810		
gm/min	75 700	288 000	28800		

NOMENCLATURE

L = Lohms

S = Specific gravity*

H = Differential pressure

V = Viscosity compensation factor**

I = Liquid flow rate: Volumetric

w = Liquid flow rate: Gravimetric

K = Units Constant – Liquid (see chart)

*S = 1.0 for water at $80^{\circ}F$.

**V = 1.0 for water at 80°F.

For other fluids and temperatures, contact your Lee Sales Engineer or visit us at www.TheLeeCo.com

Tel: 860-399-6281

Fax, Order Entry: 860-399-7058

Fax, Technical Information: 860-399-7037

Web: www.theleeco.com